Cinderellas
If there is one thing that stands out in any overview of the conservation of timber structures in Australia, it is that they are the poor relations. We have been slow to recognise them and take them seriously. We have not understood them well. We have not, by and large, been able to research them in anything approaching a satisfactory way. We have not known how to treat them. So to speak about prejudice and ignorance in timber conservation is not to criticise conservationists; it is to speak about a prejudice which is general in the community and about a degree of ignorance which is inevitably found, even amongst conservationists, as a result of that community prejudice.

We have not understood these buildings because we have come to them from a European and, overwhelmingly, a British background. Timber buildings have been seen as second-rate, and certainly in the European context they tend to be much younger than buildings of masonry. The values and philosophy of the European conservation movement have evolved to deal with classical temples and Gothic cathedrals, relieved only occasionally by a stave church or a cruck barn. We are not the only ones to labour under this inappropriate European burden. As I have suggested elsewhere, the palm thatch, grass matting, bamboo and paper of our Pacific and South-East Asian neighbours are materials even less appropriate than timber for treatment under the Venice

1. Lonsdale's cottage 1891 before removal from East Melbourne. An illustration of what we should not do with our timber buildings. Photo National Trust of Australia (Victoria).

Charter. For our geographical neighbours, even more than for ourselves, the Burra Charter promises to be a more useful Bible.

Why have we not researched our timber structures? Firstly, because we have not seen them. The beady eyes of the National Trust experts have lit up at the charm of honeyed sandstone, the dignity of bluestone, and the dappled sunlit brickwork which they can see through the eyes of Hardy Wilson. Indeed, Hardy Wilson, the founder of architectural history in Australia, showed not a single timber building in the fifty plates of his Old Colonial Architecture. Secondarily, because they are hard to research: they have been far less often reported in the press or photographed by tourists; they are often on farms and are not individually identified in rate books; they are moved from one site to another, and altered or extended in ways which are difficult to discern, but sufficient to drive the historian to distraction.

My fourth assertion, that we have not known how to treat these buildings, is one which I will try to substantiate in the course of this paper. But even to begin discussing the issue we must decide what sort of structures we are seeking to preserve and why. Is it not true that timber buildings are indeed second rate, cheaper in construction, the subject of less architectural refinement, occupied by people and functions of lesser importance, and in any case difficult to preserve in any meaningful way? Why not just let them go and concentrate on things of more importance?

Characteristic Australian types

There are in fact many timber structures which are uniquely or characteristically Australian, of special technical interest, or of particular aesthetic charm.

Aboriginal housing

Aboriginal housing, with only some recently-reported and partial exceptions (the stone houses at Lake Condad in Western Victoria) has been built wholly of timber or yet more perishable materials. If I do not devote time to it here, this is not because it is unimportant, but because it is outside my field of study and because none of any age survives. A good proportion of early European structures in Australia were also of timber, and it is only because of their higher mortality rate that we (and Hardy Wilson) are left with a picture of colonial architecture as an architecture of brick and stone. Australia is not alone in this - our picture of Egyptian architecture, for example, is determined almost entirely by the few remains of tombs and temples, not by the great bulk of ordinary houses and shops in timber and mud brick.

There is one remarkable Australian settlement of a later period where no timber is left, but where the stone remains survive as a sort of fossil of what must have been predominantly a timber framed township of gold seekers. The miners at White Hills, adjoining Artunga in Central Australia, had walked or cycled with their supplies for hundreds of miles from Oodnadatta. They brought few building materials and the site was barren, but they certainly used what timber they could, though exactly how they built remains a mystery. The stone circles that remain look in many cases not unlike the aboriginal stone houses at Lake Condad. If I may jump ahead to one of the later questions of this paper - how should one interpret such sites for the public? Can one guess at the timber roof structure? Is one justified in reproducing or mocking up the house forms which no longer exist? If this isn't done, will these remains convey anything at all to the average viewer?

Horizontal slab structures

Some of our most interesting timber constructions are the primitive ones, because they are a direct response to local materials and conditions, and have few if any direct parallels in Europe. They derive largely from the physical properties of local materials such as bark and splitting timbers. Even now they are not well understood. For example, Peter Freeman quite wrongly claims that

1 Hardy Wilson, Old Colonial Architecture in New South Wales and Tasmania, Sydney, 1924.
horizontal slab building (what he calls 'drop log' or 'drop slab') is 'peculiar to the Riverina,' while the most recent examination of horizontal slab techniques, by Fiona Bush and others, proceeds on the basis that all slabs are flitches cut from the face of the log, so as to have one rounded face.\(^2\) In fact, the great majority of slabs, including examples cited by Bush,\(^3\) are split on both faces and at least one edge. Indeed, this is necessarily so for a timber like Tasmanian or Victorian messmate stringybark, which was split radially. Even for a timber like ironbark,\(^4\) round-faced slabs would constitute only a minor proportion of a large log, when the whole log is being used for slabs.

Less serious, but extremely irritating, is the coining of terms like 'drop log,'\(^5\) which is actually taken as the title of Bush's study; there is no evidence that any such term was ever used in the nineteenth century, and even the term 'drop slab' has no earlier or better authority than Mrs. Aeneas Gunn's reference in 1908 to the 'drop-slab-panel' system (which in fact used flitches).\(^6\) As Georgiana McCrae, decades earlier, was referring more sensibly to 'gum tree slabs supported horizontally' and Dugald Ferguson (whom Bush quotes) wrote similarly in 1891 (twice) of 'sawn slabs laid horizontally,'\(^7\) there seems every reason to adopt the term 'horizontal slab,' as was done by Cox and Freeland in their pioneering *Rude Timber Buildings*, of 1969.\(^8\)

Bark

At Flynn, in Gippsland, is the largest bark building known to survive in the world. Although bark is of course timber, and should be considered germane to this conference, I will mention only in passing here the fact that use of this material is the only one in which it seems possible that European settlers were significantly influenced by Aboriginal building traditions, and that the system of roofing in bark is an absolutely distinctive Australian development. Because the sheets shrink and curl, and tear themselves apart wherever they may be nailed or fixed down, it involves little or no fixing through the bark sheets, but instead an ingenious system of weighing them down from above and of lashing them into place. At Flynn the large bark roof survives under corrugated iron, and the main front wall has been overlaid in split paling weatherboards of infinite delicacy, a remarkable contrast with another example I will mention below.

Wattling

Even more interesting in many ways are those techniques which derive from Europe. One of them is wattling, and it is worth mentioning here because of its remarkable continuity, and because of the extent to which it is misunderstood in Australia. Wattling is the weaving of flexible twigs or saplings into a basketwork, and it was used for purposes other than conventional building, notably roadmaking. What looks like one of the earliest examples is the Abbot's Way in Somerset, an early Neolithic trackway of about 2500 B.C. which is made of round timbers and planks of alder and other wood, apparently wattled together and laid over marshland to create a sound surface.\(^9\) Ordinary footpaths of wattling have been excavated at the Jorvik site in York, where they were used on what would otherwise have been slippery slopes.

3. Ibid., pp.19-21.
5. Freeman, op. cit. pp.115, 190, uses the term 'drop log' for what are in fact slabs or flitches, despite the fact that he uses 'drop slab' elsewhere, pp.70-1, 285.
Wattling is much better known in the context of 'wattle and daub,' where the wattling is done in panels within the timber frame of a building and is plastered over with daub, or mud, but its most common use in Britain was for making hurdles, or portable panels, which could be used for fencing purposes. Now it is commonly forgotten that hurdles were very widely used in early Australia, most of all in the great period of squatting expansion in about 1820 to 1850, when quantities of sheep were grazed on unfenced land and had to be shepherded together at night for security. Wattling was certainly also used in the Colonies for permanent fencing.¹

What this means is that wattling may have been widespread in Australia, quite apart from building purposes. Now it is probably well enough known that the Australian Acacia tree is called the wattle, simply because it provides the flexible twigs required for wattling, though it has recently been pointed out to me (by Dr. George Gibbons of Sydney) that the same term is used for the Acacia in South Africa, so it may not be an Australian coinage. Wattle and daub is a well-known term in Australia, but surviving specimens are fairly rare.

What is much more common in Australia is a form of construction which does not rely on flexible timbers and is not even half-timbered, and which uses mud as a filling between the wall surfaces rather than as a plaster or daub upon the faces. Although this construction contains no wattle and no daub, it is commonly miscalled wattle and daub, especially in the vicinity of Hill End, New South Wales, where it is widespread.² I have fought a battle to have some more suitable name, such as 'sapling and pug' used for this technique, but I have recently located for the first time a contemporary description of the actual building of such a structure at Hill End in 1873, and found to my chagrin that it was being referred to as 'wattle and daub,' even at that time.³

'Dutch biscuit.'

Another form of infill used in half-timbered construction came to us from Germany rather than Britain. The Rappite settlers at New Harmony, Indiana, who had emigrated to the United States from Wurtemberg, used a means of insulating their ceilings which was later known as 'Dutch biscuit' - probably from Deutsch, or German, biscuit. I know nothing of its use in Germany, though Allan Willingham, of Melbourne, has noticed a similar form in the French chateau of Chateaudun. It is a flat slat of wood with pointed ends around which has been wrapped a layer of grass in a clay or mud slurry. When the clay was dry, or near-dry, the biscuits were set with their points in grooves in the sides of the ceiling joists.⁴

The only contemporarily documented use of this construction in Australia, recently brought to my attention by Ian Evans of Sydney, is an account by the Reverend C. Elipper of the German mission at Zion's Hill (now Nundah, a suburb of Brisbane), published in 1841: 'the ceilings are formed of plaits of grass and clay wound about sticks laid across the tie beams.'⁵ A ceiling of this sort appears (from a survey drawing) to have been found at the South Australian German settlement of Lobethal,⁶ though its nature was not at the time clearly recognised, and the nearest description is that of ceilings 'constructed of wattle and daub panels set in between beams.'⁷ However, Gordon

¹ For example in, Melbourne a wattle fence was specified by the Clerk of Works for the Officers Quarters, which straddled the subsequent line of Little Collins Street, between King and Spencer Streets: Henry Ginn, 'Sketch of the Officers Quarters. Melbourne,' 20 November 1846 (NSW Archives, 2/8477 Public Works, Port Phillip Establishment Plans 1846-7).
² Keast Burke, Gold and Silver, Melbourne, 1973, passim.
⁵ Christopher Elipper, Statement of the Origin, Condition, and Prospects, of the German Mission to the Aborigines at Moreton Bay, 1841, quoted J.G. Steel, Brisbane Town in Convict Days 1824-1842, St. Lucia, Qld., 1975, p.290.
⁷ Ibid., p.93.
Young, the leader of the survey team, has since told me that he believes Dutch biscuit construction to have been widely used in the area. The same method was used early in the 1850s by German settlers in Western Victoria, notably the Burgers, on their farm near Penshurst. Here the Dutch biscuits appear not only in the ceiling but set vertically in the framing of partition walls, and indeed at least one of the South Australian examples cited by Young sounds as if it had walls of Dutch biscuits. This case is the Friedrichstadt barn at Hahndorf, where the wall panels (though described as wattle and daub) are formed from vertical stakes slotted into holes in the timber rails and plates and wrapped around with straw and then plastered with a mud slurry.1

At Penshurst I suspect that the exterior walls (contrary to my previously-published impressions),2 are filled simply with vertical timber stakes which are finished by plastering over with mud. The same technique appears in other areas in Victoria where German settlers were numerous, such as the vicinity of Minyip.3 Half-timbered buildings with some sort of vertical stakes inside the panels are also illustrated in studies of German buildings in South Australia by Young and others, but there is in many instances no explicit description of them. Young describes in general what he calls wattle and daub, a row of vertical stakes fixed between a top and a bottom rail, sufficiently spaced for straw to be interwoven between them, and over which is plastered on both faces a mixture of straw and mud.4 He illustrates examples which presumably are of this construction, for he describes them as wattle and daub, and the survey drawings seem to indicate close-set timber stakes of substantial dimensions.5 Although construction of this general type, with mud plastered onto stakes, must be presumed to have reached Australia from Germany, it is also to be found in Czechoslovakia.6

This has been to choose only a few aspects of vernacular construction in timber, but even sophisticated carpentry work appears to have characteristics which are not typical of contemporary building in Britain. At Germantown, another German settlement in Victoria (now called Grovedale), there is a properly-carpentered house of the 1850s, which is built entirely without base plates; the floor joists rest on a masonry base and the studs are attached to the sides of the joists.

Minor joist construction

The most striking local variation is what I call, for want of a better name, 'minor joist construction,' which is found in the Hyde Park Barracks, Sydney, of 1817-19, the mill at Windy Willows Brewery at Goulburn, 1836, and the outbuildings at Old Wesleydale, Cholmondley, Tasmania, possibly of the 1830s. The side eaves of a pitched roof are carried on short joists which are not continuous across the roof span. The natural result would be that the outer ends would drop under the load of the rafters resting upon them, and the inner ends see-saw upwards. In practice the inner ends are restrained by a connection with a member running longitudinally, parallel with the wall, and joining in its turn at either end to the principal roof trusses. The whole system seems convoluted and illogical, unless the resulting upward force on the base of the truss is held to be significantly useful in reducing the nett loading.

Although I can find nothing approaching this construction in any British source, there was a related form used in Maryland, U.S.A. Here the house 'Cedar Park' of 1702 has the principal rafters them-

2 Miles Lewis, Victorian Primitive, pp.65-6.
3 See for example the settler's cottage near Minyip in a photograph of 1873 by R. Boschen, reproduced in H. Paynting and M. Grant (eds), Victoria Illustrated 1834-1984, Melbourne, 1985, p.426.
4 Young, Hahndorf, I, p.157.
5 For example, the barn at Neudorf, near Lobethal, in Young, Lobethal, op. cit., p.123; also G. Young and P. Perkins, Pioneer Buildings of the Onkaparinga Bowl, Adelaide, 1984, p.23; and Gordon Young, 'Early German Settlements in South Australia,' Australian Journal of Historical Archaeology, 3, October, 1985, p.51.
6 For example, house No. 19, Becov, illustrated in Vaclav Mencl, Lidova Architektura v Ceskoslovensku, Prague, 1980, p.182, fig.450.
the rafters, which somewhat resembles the use of the jack joists at
from traditional cruck construction, and therefore to
they do not project past the

2. Minor joist construction used in colonial build-

selves running down directly to the line of the wall, but the eave is built out from this to give the roof a bellcast profile, and this is achieved by minor joist construction. In this case there is some logic in the system, for there are true joists running at right angles to these, between the principal tie members, and the minor joists provide a logical means of building out the eave from the outermost of these true joists. 1 An almost exactly contemporary house, 'Ocean Hall' of 1703, indicates the derivation of this built-out eave construction. The exterior walls are of masonry, but the roof (and attic) is framed with a pair of cruck-like rafters which bend inwards at the base: because of this curvature, short horizontal members are required to build the straight line of the roof slope out from the rafters, which somewhat resembles the use of the jack joists at 'Cedar Park,' though in this case they do not project past the wall at all. 2 The 'Ocean Hall' construction in its turn clearly derives from traditional cruck construction, and therefore presumably from Britain. The Australian system, more especially as it appears in scattered localities, seems more likely to have derived from intermediate British sources as yet unidentified than from the United States.

Lightweight construction

At the opposite end of the scale from the cumbersome jack joist construction there are some surprisingly lightweight forms of carpentry to be found in the Australian colonies. One is the construction of some of the roofs of the buildings of the Van Diemens' Land Company establishment at Highfield in north-western Tasmania. The supposed chapel, completed in 1842, has closely spaced pairs of lightweight rafters, each with a collar tie half way up, while the stables, dating from 1836-7, have a similar system, but are built out to create a curve on the underside, for what must have been a very handsome boarded barrel vault ceiling. 3

The roof construction at Highfield may be lightweight because the elements were prefabricated in England, and this is certainly true of the closely spaced and extremely light roof trusses of 'Woodlands' at Tullamarine, Victoria, of 1843, the members of which vary between about 60 x 30 and 80 x 25mm. These are not triangulated, and should perhaps be called assemblages, rather than trusses, but they are used rather like modern ganged nailed trusses, and spaced as close as 545mm in the house and 475mm in the stables. 4 The house was manufactured in London by Peter Thompson.

Two other aspects of lightweight construction were the introduction of stumps and the stud frame. I need not repeat here the points I have made elsewhere by way of expanding and modifying Peter Bell's valuable account of the stud frame in Australia, 5 but it is worth quoting again the comments of William Howitt, whose English eyes saw a

5 Miles Lewis, 'Peter Bell and the Australian Stud Frame, Architecture Australia, 74, 7 (1985), pp.78-83; Peter Bell, Timber and Iron: Houses in North Queensland Mining Settlements, 1861-1920, St. Lucia, 1984.
stud frame on stumps as resembling a bird cage perched on surveyor's pegs:

The timbers of which their skeletons are first formed are often only two inches by two and a half in thickness. I actually measured some in Collingwood - the spars and joists about two inches by three. The floors are generally raised about a foot from the ground, and are principally supported by pegs driven into the ground, just as you see pegs driven to mark out the site of any intended building. The whole thing, before they cover it with boards, looks more like a spider's web or a bird's cage, than anything else. You imagine you might just kick it over, as you would a basket.

I have been able partially to investigate a house which is of the time of Howitt's description and in Richmond (Victoria), one of the areas where Howitt saw these houses. The floor is supported on undersized split stumps simply resting on flat stones at ground level, which I at first took to be original, but on mature reflection I think them more likely to be the result of an early and primitive reblocking.

Prefabricated buildings

I could not hope to deal here adequately with prefabricated timber buildings, of which I have written in other places, but by naming a few highlights I can convey an impression of their technical interest for the purposes of conservation. There is, for example, the modularised system of John Manning of London, in which interchangeable solid door and window panels were slotted between grooved posts. These houses reached Australia in large numbers from about 1830. There are the houses of exotic timbers imported from Singapore, Hong Kong and India, including one recently discovered to have scores of painted Chinese characters, with little discernible rhyme or reason underlying them. Then there are special aspects like the board cladding linked with loose metal tongues, and indeed the more conventional rebated shiplap boarding which seems to be the ancestor of the so-called chamferboard of Queensland.

Cottage orné and gothic

2 For example, recently, Miles Lewis, 'The Portable House,' in Robert Irving (ed.), The History and Design of the Australian House, Melbourne, 1985, pp.275-289; Miles Lewis, 'The Diagnosis of Prefabricated Buildings,' Australian Journal of Historical Archaeology, 3, October, 1985, principally pp.87- 60.

3. Highfield stables.

So far these have all been aspects principally of technical significance, but there is plenty of distinctive aesthetic character in Australian timber buildings. In Tasmania it was perhaps the use of Huon pine that inspired the wide range of Regency treillage verandahs and round palisade fences which are such a pleasing feature of early domestic work on the island. Elsewhere one finds even more refinement in the bargeboards and finials of Gothic houses, of which one remarkable one is 'Balantrae,' Buninyong, Victoria, of about 1859. Anne Neale has just discovered that much of the ornamentation is taken from A.C. Pugin and E.J. Willson's Ornamental Timber Gables, 1831. It has
not been simplified, like most woodwork derived from this source, which makes it an exceptional example. The strongest stream of development is indeed that of the cottage orné and the Gothic, though there is not a single coherent character such as would warrant a claim for a distinctive Australian ‘carpenter Gothic’ style. Specifically American sources for the Gothic timber house in Australia have been studied by Neale, but I would prefer to cast my net somewhat more widely than this.

Firstly, I reiterate the suggestion which I have previously made elsewhere, that there is, improbably enough, an ecclesiastical source for the exposed timber frame which finally became the standard in North Queensland. The ecclesiologists were interested in the idea of devising church designs which, while liturgically correct, were adapted to the climates and building materials of colonial outposts. ‘Hyperborean Gothic’ (as G.L. Hersey calls them) timber churches were designed with the framework on the face, making an aesthetically interesting pattern and evoking the effect of traditional half-timber construction.

A simple timber church in this tradition was designed by William White for Capetown in 1849, though only the main vertical members were expressed in the wall elevation (together with angled struts serving the function of buttresses). A better example is that which R.C. Carpenter designed in about 1850 for Tristan da Cunha, though it was probably never built. This was now a full-blown exposed frame building, though with vertical strip panelling unlike later Australian examples. These churches were subsequently ubiquitous in New Zealand, where they are referred to as being in the ‘Selwyn style’ because they can be attributed to the influence of the Anglican bishop, G.A. Selwyn, who was himself a member of the Camden Society and a designer of some skill.

The notion of exposed framing as a picturesque device was already well-established in England, and indeed not confined to the Gothic or to churches. It was particularly promoted by S.H. Brooks in his Cottage and Villa Architecture of about 1839, with designs in a variety of styles and generally with brick or other solid nogging between the framing. Significantly the domestic use of exposed framing had an impact in New Zealand in the very same circle which introduced the ecclesiastical version, that of Bishop Selwyn. Selwyn’s chaplain, William Cotton, had strong views on architecture, and in 1843 wrote to his sister Phoebe to ask her to visit cottages recently built at Rooknest in Surrey and sketch the best of them ‘as I think it very likely we may be able to build in the same style which shows the timber, in all manner of odd shapes between the plaster panels.’ In the event the style was used with tim-

4 Ibid., pp.84, 86-90.

6 S.H. Brooks, Designs for Cottage and Villa Architecture, London, c1839. Brooks illustrates three houses using exposed timber framing, between which is brick nogging plastered in different ways. Pls.LI-III show a sort of Tudor house and pls.XLVI-XLVII show a house purporting to combine the Elizabethan and Old English styles, with the brickwork plastered. Another house of Tudorish character, pls.LVIII-LX, may have the brick exposed. There is one house, pls. XLIX-LI, in what might be described as a Helvetico-Italianate manner, with broad panels in the framing to be filled with flint or ironstone. Another two houses are in the ‘Old English’ - in fact a very pretty loopy bargeboarded Gothic, pls.XL-XLII, LV-LVII, which are meant to be lathed between the framing, plastered inside, finished in Roman cement or mastic outside and with the cavity filled (rather unwisely) with sifted coal ashes, sawdust, ‘or any other substance which will absorb the moisture.’

7 Stacpoole, op.cit., p.31.
ber boarding as filling, as for example in the two hospitals designed for Governor Grey by Frederick Thatcher (also Bishop Selwyn’s architect) between 1846 and 1848, one of which was relocated but survives as a house called ‘The Gables,’ at New Plymouth.1

In Victoria exposed framing is found in Samuel Jackson’s Gothic ‘Wattle House’ of 1845, which, although I have not been able to probe the structure, appears to have a solid filling within the panels in the preferred S.H. Brooks manner. At later dates there are numerous Australian buildings which are wholly of timber with the frames exposed, especially in gardens and parks, such as the charming caretaker’s lodge at Victoria Park, Peron, designed by R.R. Jewell in a quasi-Italianate style.2 Australian churches with exposed frames are all more or less Gothic, and the first was that at Kiama, NSW, probably designed by Bishop Broughton. This, Kerr and Broadbent have suggested, was possibly influenced by Bishop Selwyn himself, who was in Sydney in 1842 when the church was first being planned.3 The tradition continues sporadically with other examples like the charming Christ Church at Tarraville, designed by the local architects Pettit and Hastings in 1856. In due course such churches appear in Queensland, for example at the former Presbyterian Church at Beenleigh of 1876,4 where they generally seem to precede the use of exposed frames in houses and other structures, and therefore seem likely to be the origin of the idea.

At a more general level, the cottage orné can be traced through the medium of timber in some very interesting rustic examples. The first one of note is perhaps H.B. Lane’s design for the Government Camp at Ballarat, of 1853, with its rustic forked tree trunk columns.5 Then there is Louisa Meredith’s house ‘Malunnah’ at Orford, Tasmania, of 1868, with its deliberately rustic porch posts of knotty Oyster Bay pine. There is no doubt that Meredith was familiar with the nuances of the picturesque tradition, as we know from her comments elsewhere,6 and the house should be placed in line of descent from Nash’s Blaise Hamlet. A little school of ornamental building in Oyster Bay pine seems to have developed in the Glamorgan district, and Meredith may well be its founder.

There is a scattering of interesting later buildings in this tradition, not least of which is the tower at the Forest Nursery, Creswick, which is Australia’s answer to le Hameau. It was built as late as 1911-12 by the carpenter, Adam Coulson, assisted by students of the Victorian School of Forestry and by staff of the nursery.

Other ornamental uses of timber include houses in more eccentric modes, such as ‘Te Aro Villa,’ later ‘Garthowen,’ in Charles Street, Launceston, which was apparently a display house. This is dated 1882 on the facade, but is believed to have been built over a number of years, and displays an extraordinary variety of design in almost all its external elements.7 The reason for its apparently New Zealish name is unknown, but it shows distinct American influence by way of A.J. Downing and Calvert Vaux.8 There are numerous charming public rotundas and pavilions, look-out towers, and other recreational buildings of which the recently researched Proudfoot’s Boathouse9 near Warrnambool, Victoria, of 1885 onwards, is a good specimen.

Interior uses of timber

Late in the nineteenth century one finds increasingly active commercial promotion of Australian timbers for interior use. A conspicuous example is the house built in about 1895 for the Bendigo tim-

1 ibid., p.30.
3 Joan Kerr & James Broadbent, Gothick Taste in the Colony of New South Wales, Sydney, 1980, pp.64, 74.
5 Weston Bate, Lucky City, Melbourne, 1978, pp.39, 48.
8 The window hoods, for example, compare with those illustrated in Calvert Vaux, Villas and Cottages, 2nd ed., New York, 1864, (1857), p.108.
ber merchant, J.R. Hoskins, at Quarry Hill. The architect was W.C. Vaaland and the objective was that of 'practically illustrating the utility and beauty of the native timbers.'

The basement walls are of brick, but the remainder of the structure has been worked out of timbers grown in different parts of Australasia. It has thus been clearly demonstrated that many colonial grown woods, which are generally considered to be only fit for fuel, can, if properly treated, hold their own with imported woods. The timbers used in the construction of the building are the Victorian stringy bark, oak and mountain ash, the New South Wales Murray pine, South Australian blackwood, Tasmanian yellow pine, New Zealand kauri pine, etc. The walls, floors and ceilings have been worked into panels of diaper and parquetry, the sight of which should make every member of the A.N.A. proud of his native grown timber. ... In the ceiling of Mr. Hoskins' bedroom a splendid representation of the Union Jack has been produced in native timber of different colours.¹

While the outside of the house is less remarkable than the inside, the boarding used to clad it was, in advance of its time, stained rather than painted, as was the case in some of Robin Dods' houses in Brisbane at about this time. The same was later to be true of the competition - the house built in about 1914 in the Melbourne suburb of Camberwell by the Norwegian timber importer, Gunnersen. The style was a sort of two-storey Scandinavian bungalow, and the interiors were almost as single-mindedly ligneous as Hoskins's but much more stylish, with delightful Norse arts and crafts/art nouveau furniture to match. From yet another quarter of the globe, but in somewhat the same category as an exemplar of timber construction, was the imported Pasadena bungalow 'Redwood.' Although it was designed to test the market for the eponymous material, as well as for the bungalow style and for prefabricated buildings as such, it was in fact very far from being the first Californian redwood building imported into the country.²

Industrial buildings

It would be wrong, in such a survey, to ignore industrial buildings, and especially those rural ones which are so particularly characteristic of Australia, but shearing sheds especially have attracted their fair share of attention, especially in Peter Freeman's valuable study of Riverina examples.³ No other rural type is so ubiquitous as well as so distinctive, but there are of course fine barns, stables, milking sheds and killing pens. Least known, however, and most dramatic are grain stores of the type found at Dunolly, Victoria - a huge tent-shaped building with a corrugated iron roof carried on round timber posts of great height, and an interior atmosphere like that of a cathedral. I have learnt, since first drafting this paper, that this building has been recently and tragically demolished. There are also fine timber piers, wharves, and trestle and other bridges, which it is beyond me to discuss here, and indeed unnecessary to do so in the case of bridges, which are now well documented through the works of Professor Colin O'Connor.⁴

The sawtooth roof

Of urban industrial building in timber, there is only one aspect which calls for particular attention here. This is the sawtooth roof, which met with acceptance in Australia very soon after Britain, partly because the lighting and functional requirements of woollen mills were similar to those of the various spinning mills which were subject to British experiment, but more especially because Australian wool stores required show floors with high quality uniform lighting, such as only a south facing sawtooth could provide. As there seems to be no published account of the evolution of this form either in Britain or in Australia, a brief essay in this direction may be of some value.

In England mills had been accommodated in three to five storey buildings, to make the most effective

¹ Bendigonian, September, 1928.
² For example, 'Elford's Patent Portable Houses,' built mainly of Californian redwood, were available in Melbourne in 1883. Argus, 13 September, 1883, p.2.
⁴ Colin O'Connor, Register of Australian Historic Bridges, St. Lucia, Qld., 1983; Colin O'Connor, Spanning Two Centuries, St. Lucia, Qld., 1985.
use of a single engine room or source of water power. By the mid-century, however, important experiments were made with single storey design at Marshall's Flax Mill, Holbeck, near Leeds, a model factory which was almost certainly the inspiration for that in Disraeli's Sybil. The innovative features of this building included a flat roof covered with soil and planted with grass upon which sheep grazed, conical glazed skylights, hollow columns to remove rainwater, sub-floor heating reticulated in pipes, and Egyptian styling of the office facade.

While Marshall’s mill had been roofed with a very substantial brick vaulting, sawtooth roofing for such spreading single-storey factories was promoted by the engineer William Fairbairn as a part of 'the shed principle' (so-called because the single-storey height was more conspicuously novel than the roof form), and it was widely used for cotton and weaving sheds. At one point Fairbairn seems to imply that he had used sawtooth roofing as early as 1827, but his first documented use of the system seems to be in 1852-3 in the Weaving Shed (and perhaps also the Combing Shed) of Titus Salt's Saltaire Mills near Bradford. This establishment became well-known, not least because of Fairbairn's publication of it in his Treatise on the Application of Cast and Wrought Iron to Building Purposes, of 1854. At Saltaire Fairbairn's sawtooths had the principal rafters of timber, but the ties and a single strut were of iron. It was unlike Fairbairn to use timber at all in so significant a position, but when the sawtooth reached the Australian colonies in about 1865 it was translated entirely into timber.

The first local example seems to have been the mill of the Victorian Woollen and Cloth Manufacturing Company on the Barwon, built in three stages from 1865 to 1867 to the designs of the architect Jacob Pitman, and then John Young. This was followed by the show floor on top of the wool store of T.S. Mort & Co at Circular Quay, Sydney, which was built in about 1866-9 to the design of Edmund Blacket. The adoption of the shed or sawtooth form was probably the natural thing for the woollen mill when it had become so widely accepted for spinning and weaving factories in Britain, but its use in the wool store developed from the somewhat novel use of the top floors of these buildings as places for buyers to inspect the merchandise, hence the special need for good and uniform light.

The oldest surviving sawtooth roof in Victoria appears to be that of the wool store built by C.J. Denny at Geelong in 1872, which was probably directly influenced by the woollen mills, because the show floor at the top was reported as being 'lighted like the woollen factories, by southern lights of ribbed glass in the roof, and ventilated by windows on every side.' The drawings, which sur-

4. Fairbairn's sawtooth at Saltaire.
vive, clearly show the fully evolved sawtooth system as well as the timber framing, including crossheads, and all of this can still be seen today. The sawtooth was taken up in other buildings at Geelong, for example in the Strachan woollen stores at some time before 1891.1

In the meantime the sawtooth system had been taken up in other woollen mills, including another which survives today, the Ballarat Woollen and Worsted Mill at the corner of Humffray and Hill Streets, Ballarat. The first stage, designed by the local architect Henry Caselli, was built in 1872-3, and it was extended in 1874. Both the early portions have timber sawtooth roofs.2 Another sawtooth-roofed woollen mill was E. & W.A. Gaunt’s Alfred Mills in Osborne Street, Williamstown, established in about 1880, and it is interesting that, the site being orientated at something approaching 45° to the cardinal points, the roofing was directed in part to the south-east, and in part, at right angles, to the south-west.3 A considerable amount of timber-framed sawtooth roofing can still be found at the Newport Railway Workshops, not in the original buildings but in the spray painting shed of 1898, and in the southern extensions of the main buildings, particularly those of the west block which seem to date to about 1909-11. And then there are very large areas of timber sawtooth roofing on the site of the Sunshine Harvester Works in Sunshine.

The use of beams braced up with trussing rods is the most interesting feature of at least two of these sawtooth roofs. The trussing of beams was well-established in Britain in the nineteenth century and into the twentieth,4 one early published example being at the Railway Workshops at Worcester (before 1865), where trussed purlins spanned 4.5 metres between the principal trusses. Each purlin comprised a spaced pair of 230 x 75mm fitches connected with bolts and spacers. The trussing bar was connected to special castings under each end and ran through a cast iron dropper at the centre,5 by contrast with the two droppers used on each span at the Sunshine Harvester works. The system was probably well-known in Australia, and is found, with two rods and central droppers, in the top floor of the Dalgety Woollen Mill at Gheringhap Street, Geelong, of 1901,6 as well as the former West Melbourne Gasworks, which have been cited by Ward.7 After the 1890s the replacement of timber members with steel became more common, but the process was slow, and never complete. Crossheads tend to disappear, because timber construction is mainly used for lighter-weight work where shear is not an issue, but for long spans and heavy loads the trussed beam was still frequently found economical, at least as late as the 1960s.8

Two developments of the twentieth century which are more or less characteristically Australian must be mentioned. The first is a systematic procedure for setting out the geometry of roofing members by means of the steel square, which was enunciated lucidly in 1929 by one Alex Smith,9 though it is unlikely that he was the originator of any significant aspects of it. It is not appropriate here to work through Smith’s geometry, but his influence seems to persist later on, as in the section on ‘Steel Square Method of Setting out Gable Roof’ in

5 Newlands, op. cit., p.138 & pl.XIII.
the excellent manual *Carpentry and Joinery* which was first prepared in 1945 for the Commonwealth Reconstruction Training Scheme, but subsequently reprinted for general consumption under the aegis of the Department of Labour and National Service.\(^1\)

The second aspect is the development of the characteristic local form of brick veneer, the ultimate symptom of our anti-timber prejudices in that the timber framing is load-bearing and the outer brick skin is added for essentially cosmetic reasons. I have discussed this in detail elsewhere,\(^2\) and need only summarise the main aspects here. The system differs in some essentials from that which was developing at about the same time on the west coast of the United States. The earliest local example so far identified is a house at Gnarwarre in Victoria which dates from 1903 - a sophisticated building, probably designed by architects - and this was followed by only sporadic instances until about 1928, when the system was introduced by builders in the metropolitan area of Melbourne, and accepted by the State Bank as appropriate for houses upon which money was being lent.

Conservation in practice

While the history of timber construction in Australia shows many distinctively local characteristics, the procedures for the conservation of it do not. It is, nevertheless, possible to name some of the issues which have been actively debated in relation to projects known to the present writer. They are -

- The means if any to be used in marking newly introduced elements for future identification.
- The extent to which buildings may be dismantled and reassembled for the purposes of archaeological or other investigation.
- The extent to which formerly concealed aspects of technical interest should be left exposed, or otherwise interpreted, in buildings open for display.
- The appropriate way to protect timber structures from the weather, fire, or other destructive forces.
- The means to be used in removing later finishing coats from wood surfaces.
- The extent to which attempts should be made to reinstate the original appearance of timber surfaces.

Some of these questions have been at issue in the examples that follow, but I would begin by indicating a change which has taken place over the last decade in my own attitude, and I suspect in the attitude of many others, to the question of replacement of timber elements. The conservation of buildings first became a national issue at the professional or technical level following the Hope Inquiry into the National Estate in 1973-4, and this was exemplified by the workshop on building materials held in Hobart in about 1975. It was in these novel circumstances that I heard a CSIRO wood scientist propound the commonsense view that timber was of its nature a perishable material, and that it was not sensible to speak of literally preserving a timber structure in the same manner as a masonry one. Any or all of the components should be replaced as necessary, as a sort of natural, organic ongoing procedure.

I was largely persuaded by this, but I am now largely unpersuaded again, for three reasons. Firstly, I first learnt in the very year of the Hobart workshop of the techniques of stainless steel and epoxy reinforcement or reconstruction,\(^3\) which have since been used in Australia at 'Elizabeth Farm' and elsewhere. Secondly, I have seen, and will describe below, attempts to replace timber members either with neutral modern pieces, on the principle of anastylosis, or with pieces which seek to replicate the original craftsmanship and finish -

and having seen these attempts I now understand that the authentic work is of absolutely critical importance, and that the best attempt at replication is unlikely to be more than a crude forgery. Thirdly, in 1986 I had the stunning experience of entering a timber building and of standing upon a wooden floor more than 2600 years old.\(^1\)

The first example I have to cite is one I found particularly devastating. I inspected Kulkyne homestead, in the Kulkyne-Hattah National Park on the Murray River, late in 1981. It was made up of two panelled log buildings of Murray pine, probably dating from the 1870s and in authentic condition. This was a striking contrast to the fake building of the same constructional type known as Old Mildura Homestead, which had been built in Mildura as a tourist attraction. I reported enthusiastically to the National Trust, and the Historic Buildings Council entered into negotiations with the owner. Finally the Minister himself determined to inspect the property, but, in 1982, the day before he was due, the complex was mysteriously burnt to the ground.

Cases like this are relatively rare, at least in rural areas, but fire itself is not. It was the cause of destruction of another building of even greater conservation interest. This was T.B. Pearce's bark hut at Airey's Inlet, which dated from the 1850s, and seems to have been the oldest surviving bark building in the world. It was highly classified by the National Trust, and was the subject of a National Estate grant to the Barrabool Shire Council in 1978. Did the Council engage the leading conservation architects and wood technologists to preserve this gem? No, not exactly. Did it engage any architect or wood technologist? Well, no. The Council engaged a local drafting service, which got up a scheme for replacing every single sheet of bark with new bark, thus converting the oldest bark building in the world into the newest oldest bark building in the world.

This was averted just in time, and a slightly more careful inspection revealed that all the wall sheets were in fair condition except two or three which for years had been saturated with water from breaks in the (later) roof gutter. The bark roof was not in a sound state, but it was agreed to leave the sheets in place for posterity, and to lay new sheets on top to recreate the original appearance. This was just fine, and the Forests Commission was able to obtain bark not far away for use on the roof and the replacement sections of the walls. Unfortunately the new bark could be obtained only in smaller sizes, so that the appearance of the building would be substantially altered. In any case, the original appearance of the roof was quite unacceptable to the expert who was now engaged, and whose experience was in building mock-up bark roofs for the Sovereign Hill Folk Museum. The Airey's Inlet roof had not been built in the correct way, with the sheets lashed down with greenhide or strips of stringybark. Instead the saplings running lengthwise, across the slope of the roof, had been fixed with coach bolts straight through the bark into the framing below. Only after another battle was it agreed that the roof should be rebuilt in the original, albeit uncanonical, fashion. It was in the end completed, and I think very satisfactorily. Then it was all burnt down in the great bushfires of 1983. Recently a replica has been built on the site.

'Gulf Station'

One of the most extensive timber conservation projects in Victoria has been that at 'Gulf Station,' a homestead and outbuildings dating from the 1850s onwards, and largely built by the family itself in various combinations of round timbers, split slabs, split palings and sawn timber. The National Trust has the management of the property, and having commissioned a conservation analysis,\(^2\) has been proceeding with stabilisation and restoration. The present phase is sponsored by the Commonwealth Bank. The issues that have arisen in this project include the amount of replication which may be acceptable, the quality of craftsmanship which can be obtained for such work today, and the means by which replacement elements should be identified.

Much of the work has been done as a Commonwealth Employment Project and has been quite unsatisfactory in many respects. In fact, CEP schemes have done a great deal of damage to the conservation movement in Australia. But with the shearing shed we come to problems in work done by an expert, a person alleged to be an experienced splitter, who was engaged to replace the missing split palings. He was simply unable to achieve a match, and his palings are twice as...
thick as the originals. Some would say that this was the correct ICOMOS approach, allowing us clearly to distinguish the new work from the old, but others would say it was a most regrettable botch.

More recently, however, things have improved enormously. The property is managed by a sensitive and committed architect, Helen Watters, with a team of equally enthusiastic helpers. The repair work is done by an English-trained craftsman, Dickie Blackman, who began with a tendency to improve upon the original workmanship, but is now enthusiastically seeking to preserve it to the maximum possible extent, and to emulate it closely where replacement is necessary. Members which have been rotted out are neither totally replaced, nor rebuilt with stainless steel and epoxy, but are spliced onto new material as required. In the milking shed this technique is seen at its best, for most of the posts have been spliced onto new bases, and it is possible still to see the absolutely authentic material and at the same time it is easy to recognise that the base is new. In particular, Dickie has developed what he calls a crown joint, to allow the original mortise for a rail to be retained while splicing up the maximum of good new timber on either side. Although he is willing and able to adze and split and employ all the traditional techniques throughout these buildings where appropriate, the remarkable thing is that he makes these joints with a dexterously handled chain saw.

There is one aspect which still causes me concern on this project. When the conservation analysis had been completed and a conservation policy was being developed for this property, there was considerable debate about the means to be used for identifying modern replacements in accordance with Article 19 of the Burra Charter. Consideration was given to chiselled dates and to aluminium strips with stamped lettering, but the system ultimately adopted was that of a metal punch to be driven into the timber surface, bearing the year. On a recent visit I looked at the only available punch, and it bore the year 1983. No dates had been punched since that time, though in some places dates had been crudely inscribed by hand. Inscribing by hand is quite unsatisfactory, for it tends to lack the clarity and, I regret to say, the objectivity of other methods. That is, it is easy to put off doing it, it is easily obscured after it is done, and it is easily forged or altered by vandals.

Gairdner’s farmhouse

My next example requires a little preliminary explanation. Gairdner’s farmhouse dates from about 1854 and is on French Island, which, despite its relative proximity to Melbourne, is an isolated and effectively very remote spot. For years after I first visited the building and sought its preservation, every effort was bogged down between the Conservation and Planning departments responsible for the portion of the building which overlapped onto the foreshore reserve; Hooker Developments, who owned the other half of the building as part of a very large tract of land which they had bought for development; the Chandler family, who leased the farm on which it stood and did some tourist business on the island; and the local historical society, effectively controlled by the rival local tourist business. The building was largely unroofed and exposed to the weather, being invaded by cattle and partly collapsed, with the remainder leaning at an alarming angle.

In 1981 I had students measure and draw the building so far as was possible in its overgrown and collapsing state. The standing portion was partly of round and partly of sawn timber, filled with wattle and daub which, contrary to common belief, is rare in Australia. The collapsed portion was of sawn timber and apparently of little interest. In the nick of time, before the remainder collapsed, Peter Coutts, then head of the Victoria Archaeological Survey, took the matter in hand. He winkled a small amount of money out of some cranny in his accounts and had the site fenced to keep out cattle and the vegetation sprayed; he further recorded the now exposed remains on site; and in 1984 he obtained the services of the farmer, Alan Chandler, who was also something of a builder, hired jacks for raising the leaning structure, and organised a party of volunteers to camp on site over a weekend. The further investigation revealed the surprising facts that the sawn timber portion was also filled with wattle and daub, that it had been built before rather than after the round timber part, and that its frame had probably been prefabricated on the mainland.

There was much debate, before the work was done, as to whether propping the building was

legal, or proper, or philosophically correct, or physically dangerous. Neither Peter nor I lost much sleep over any of those issues, for to leave it as it was, or even to try to stabilise it as it was, could only result in its complete destruction within months in the first case, or years in the second. What did concern us was that the straightening-up would further stress and probably destroy the wattle and daub panels which had already suffered from the previous distortion of the frame. But there was no real option, and we determined to proceed slowly and watchfully. The propping was an extraordinary success and though a little was lost from the base of the wattle and daub panels, and they settled down slightly lower in the frame, they sustained very little further injury.

One major post was spliced onto a new redgum base, effectively, though not quite so elegantly as with the spliced posts at 'Gulf Station,' and the structure was left with props to prevent its re-collapse. After our departure, unfortunately, the roofing which Peter had arranged was a long time

5. Gairdner's farmhouse in partly-collapsed state (top left) and after propping (below).
coming, and even now, I fear, the building lacks the detailed conservation measures, the management and the protection required to ensure its continuing survival.

Having broached the topic of wattle and daub, it may be worth mentioning a novel procedure which has been followed at Hill End in New South Wales, where, as I have said, there prevails a sapling and mud building technique which is commonly miscalled wattle and daub. Recently the National Parks and Wildlife Service arranged a seminar at Hill End to discuss the local technique and to physically experiment with it, preparatory to attempting any intervention in the standing structures. The building procedure followed by the local expert engaged by the NPWS to build the experimental structure, differed from that given in the 1873 account which I have mentioned, and differed also from that of the rival local expert and so far at least as the choice of soil was concerned, from a number of the surviving structures. So one must say that the results were not entirely conclusive, but one can only praise the initiative involved in conducting such a workshop. It has at the very least brought these anomalies to light and it has tested what shows every sign of being a valid, even if not the only method of building such structures.

Mills cottage

I turn now to the Mills cottage at Port Fairy in Victoria, not because any radical conservation procedures have been employed here - on the contrary, very little active intervention has yet taken place - but because a policy is here being developed by the Victorian National Trust, for the first time, of exhibiting the house principally for aspects of technical interest. The building was not acquired on these grounds at all, but rather for its local associations, particularly with the pioneering brothers, John and Charles Mills. Investigation produced little of authentic interest from the Mills occupation, while aspects of constructional and decorative interest seemed to pour forth as from a cornucopia.1

These include the details of the timber frame of the middle part of the house, for this dates from about 1843, and in Victoria at least the details of any timber frame pre-dating the gold rushes of the 1850s are of potential interest.2 The front portion of the building dates from about 1855 and is probably prefabricated, so that it possesses its own significance, while there are many other details worth displaying - the rare remains of an oilcloth verandah roof; Morewood and Rogers galvanised tiles on the main roof, two of which are inscribed in a hand matching that on tiles at three other sites in Victoria (probably that of David Cannan, the Melbourne agent); paving stone believed to have been imported from Arbroath, Scotland; early cast iron pilasters from Dawson's Foundry, Sydney; and interesting wallpapers datable to the 1840s and 1850s.

Last of all, I turn to the question of moving buildings. Quite apart from the fact that this is very much discouraged by the Burra Charter, the moving of buildings has never in my experience been successful - that is, there has always been a substantial loss of integrity. However, I recognise that timber buildings may well be more movable than some other types, and that in many cases the move is the only way to save them. In particular, where buildings have already been moved one or more times during their lifetimes, a further move may be easier to justify. There are some major museums of moved wooden buildings in the world, many of which are regarded as highly successful. I have visited one at Suzdal, in Russia, and I have no doubt that many of the buildings housed there,

7. Timber treadmill wood museum, Suzdal, Russia.

Even if they were not directly threatened in their original located situation, would have remained largely unknown and would quickly have decayed.

Lonsdale's cottage

Having said all of this, however, I must now cite as a dreadful object lesson the history of Lonsdale's Cottage in Victoria. William Lonsdale was sent from Sydney in 1837 to act as police magistrate and commandant of the infant settlement of Melbourne and, with him, on the Isabella, he brought the components of a cottage which had been made in Sydney by the Royal Engineers. The way bill of stores provided from Sydney lists the components, without giving their dimensions, but in some cases dimensions were added on by somebody at the Melbourne end. Because the Isabella met stormy weather, certain components were jettisoned and had subsequently to be replaced. Even more seriously, it appears, from those dimensions which are known, that components were provided for a roof of lesser area than the plan below. The cottage was erected on a site south-east of the corner of Spring and Flinders Streets and remained there from 1842 to 1891, occupied after Lonsdale's departure by other government officials. During this time it was substantially extended and altered in various respects.

In 1891 the site was required for the Jolimont Railway Yards and the cottage was sold to A.M. Alexander for his seaside block at Carrum, where it (probably the original core, and not the extensions) was re-erected, probably with further changes and where it may subsequently have suffered some further alteration. It was finally rediscovered by David Saunders in 1959 and the National Trust set about moving it back to Melbourne. Although it was moved in one piece, a portion fell off the
back of the low loader en route. This part was replaced and other restoration or repair work done while the building stood in temporary storage, awaiting a site. As no site was found, the cottage was dismantled in 1962 and a proportion of the components, apparently those believed to be original, were put into storage.

What was stored comprised essentially all the joinery, plus the walls of the central room and - for some mysterious reason - a wooden chimneypiece known to have been installed in the building while at Carrum. These components were piled up at the Trust property, 'Como,' and covered with corrugated iron. Over time certain items were removed by the gardeners for their own purposes, others were used by the National Trust junior group to build their floats for the annual Moomba festival, and two of the doors were found to have been installed in the Como ladies' lavatories. To confuse matters further, certain elements, such as French windows from McCrae's cottage, pieces of Moomba floats and a mysterious flagpole, were actually added to the pile. An attempt was made in 1973 to open the pile and assess what authentic material remained and though there was not a definitive result, it was clear that the answer was not much. The unpalatable truth was that the National Trust had itself destroyed an 'A' classified building. 1

Some time later it was finally recognised that storage in the open air under corrugated iron was unsatisfactory, and the pitiful remains were placed in commercial storage. There was continual pressure within the National Trust to re-erect the building, or, what in fact would have been the case, to erect a mock-up incorporating the small remaining quantity of authentic material. It was no longer possible to get access to the components, even to prove their inadequacy, but finally they were shifted to another Trust property, 'Glenfern,' where undercover storage was available and they were again inspected and this time more carefully sorted. 2 The fact that only a small amount of the original material remains has never convinced those who argue for a recreation of the building. What has stopped them is the dearth of information on the exact form of the missing material. It is my melancholy duty, however, to announce that recently the original drawings for the cottage were located by Mike Jeffreson in the New South Wales Archives, 3 and there is now nothing to prevent the Trust from building a recreation of the cottage.

Amongst the all too common illustrations of what we should not do with our timber buildings, Lonsdale's cottage must take the pride of place.

1 Miles Lewis, 'Lonsdale's Cottage: mimeographed typescript report to the National Trust, Melbourne, 1981.
3 Public Works, Port Phillip Establishment, Plans 1846-7: 4, 'Section through AB of plan of framed House proposed for Port Phillip;' 5, 'Plan and Elevation of Wood House for Port Phillip.' Archives Office of New South Wales, ref.2/8477, pp.4,5.